Advertisements
Advertisements
Question
Evaluate:
`intcos^-1(sqrt(x))dx`
Solution
Let I = `intcos^-1(sqrt(x))dx`
Put `sqrt(x)` = t
∴ x = t2
∴ dx = 2t dt
∴ I = `int(cos^-1t)(2)dt`
= `(cos^-1t) int 2tdt - int[d/dt (cos^-1t) int 2tdt]dt`
= `(cos^-1t).(2t^2)/2 - int(-1)/sqrt(1 - t^2).(2t^2)/2dt`
= `t^2.cos^-1t - int(-t^2)/sqrt(1 - t^2)dt`
= `t^2.cos^-1t - int((1 - t^2) - 1)/sqrt(1 - t^2)dt`
= `t^2.cos^-1t - int[sqrt(1 - t^2) - 1/sqrt(1 - t^2)]dt`
= `t^2.cos^-1t - intsqrt(1 - t^2)dt + int1/sqrt(1 - t^2)dt`
= `t^2.cos^-1t - [t/2 sqrt(1 - t^2) + 1/2 sin^-1t] + sin^-1t + c` ...`[∵ int sqrt(a^2 - x^2)dx = x/2 sqrt(a^2 - x^2) + a^2/2 sin^-1(x/a) + c]`
= `t^2.cos^-1t - t/2 sqrt(1 - t^2) - 1/2 sin^-1t + sin^-1t + c`
= `t^2.cos^-1t - t/2 sqrt(1 - t^2) + 1/2sin^-1t + c`
= `x.cos^-1(sqrt(x)) - sqrt(x)/2 sqrt(1 - x) + 1/2 sin^-1(sqrt(x)) + c`.