Advertisements
Advertisements
Question
Evaluate:
`int e^(ax)*cos(bx + c)dx`
Solution
Let I = `int e^(ax)cos(bx + c)dx` ....(1)
Integrating by parts
I = `cos(bx + c) int e^(ax)dx - int(int e^(ax)dx*d/dx cos(bx + c))dx`
= `cos(bx + c)*e^(ax)/a - int e^(ax)/a(-sin(bx + c)b)dx`
= `e^(ax)/a cos(bx + c) + b/a int e^(ax)*sin(bx + c)dx`
= `e^(ax)/a cos(bx + c) + b/a[sin(bx + c) int e^(ax)dx - int(int e^(ax)dx d/dx sin(bx + c))dx]`
= `e^(ax)/acos(bx + c) + b/a[e^(ax)/a sin(bx + c) - int e^(ax)/a (cos(bx + c)b)dx]`
= `e^(ax)/a cos(bx + c) + b/a^2 e^(ax) sin(bx + c) - b^2/a^2 int e^(ax) cos(bx + c)dx`
∴ I = `e^(x)/a cos(bx + c) + b/a^2 e^(ax) sin(bx + c) - b^2/a^2*I` ....[From (1)]
∴ `I + b^2/a^2I = e^(ax)/a cos(bx + c) + b/a^2 e^(ax) sin(bx + c)`
∴ `I((a^2 + b^2))/a^2 = e^(ax) [(cos(bx + c))/a + (bsin(bx + c))/a^2]`
∴ I = `e^(ax)/(a^2 + b^2)[acos(bx + c) + bsin(bx + c)] + c`