English

Evaluate : Int_0^1 "X" . "Tan"^-1 "X" "Dx" - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate : `int_0^1 "x" . "tan"^-1  "x"  "dx"`

Sum

Solution

Let I = `int_0^1 "x" . "tan"^-1  "x"  "dx"`

Integrating by parls, we get 

I = `["tan"^-1 "x" . int  "x"  "dx"]_0^1 - int_0^1 ("d"/"dx" . "tan"^-1 "x") . int  "x  dx"`


`= ["tan"^-1 "x" . "x"^2/2]_0^1 - int _0^1 1/(1 + "x"^2) . "x"^2/2  "dx"`


`= ["tan"^-1 "x" . "x"^2/2]_0^1 - 1/2 int _0^1 "x"^2/("x"^2 + 1)  "dx"`


`= ["tan"^-1 "x" . "x"^2/2]_0^1 - 1/2 int _0^1 (("x"^2 + 1)-1)/("x"^2 + 1)  "dx"`


`= ["tan"^-1 (1) . 1/2 - 0] - 1/2 [int _0^1 1  "dx" - int_0^1 1/(1+"x"^2)  "dx"]`


`= [pi/8] - 1/2 ["x" - "tan"^-1 "x"]_0^1`


`= pi/8 - 1/2 [1 - "tan"^-1 (1) - (0 - 0)]`


`= pi/8 -1/2 [1 - pi/4] = pi/8 - 1/2 + pi/8 = pi/4 -1/2`

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (July)

APPEARS IN

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×