Advertisements
Advertisements
Question
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
Sum
Solution
I = `int(sqrt(tanx) + 1/sqrt(tanx))dx`
= `int(tanx + 1)/sqrt(tanx)dx`
Put `sqrt(tanx)` = t
∴ tan x = t2
∴ x = tan–1t2
∴ 1 dx = `1/(1 + (t^2)^2) 2t dt`
∵ sec2x dx = 2t dt
∴ dx = `(2t)/(sec^2x)dx`
= `(2t)/(1 + tan^2x)dx`
= `(2t)/(1 + t^4)dt`
= `int(t^2 + 1)/t (2t)/(1 + t^4)dt`
= `2int(t^2 + 1)/(t^4 + 1)dt`
= `2int(1 + 1/t^2)/(t^2 + 1/t^2)dt`
= `2int((1 + 1/t^2))/((t - 1/t)^2 + 2)dt`
Put `t - 1/t` = u
∵ `[d/dt(t - 1/t) = 1 + 1/t^2]`
∴ `(t - (-1/t^2))dt` = 1 du
∴ `(1 + 1/t^2)dt` = 1 du
I = `2int1/(u^2 + 2)du`
= `2int1/(u^2 + (sqrt(2))^2)du`
= `2 1/sqrt(2) tan^-1(u/sqrt(2)) + c`
= `sqrt(2) tan^-1((t - 1/t)/sqrt(2)) + c`
= `sqrt(2) tan^-1 ((t^2 - 1)/(sqrt(2)t)) + c`
= `sqrt(2) tan^-1 ((tanx - 1)/(sqrt(2)*sqrt(tanx))) + c`
shaalaa.com
Is there an error in this question or solution?