Advertisements
Advertisements
Question
Evaluate the following using binomial theorem:
(101)4
Solution
(x + a)n = nC0 xn a0 + nC1 xn-1 a1 + nC2 xn-2 a2 + ……… + nCr xn-r ar + …… + nCn an
(101)4 = (100 + 1)4 = 4C0 (100)4 + 4C1 (100)3 (1)1 + 4C2 (100)2 (1)2 + 4C3 (100)1 (1)3 + 4C4 (1)4
= 1 × (100000000) + 4 × (1000000) + 6 × (10000) + 4 × 100 + 1 × 1
= 100000000 + 4000000 + 60000 + 400 + 1
= 10,40,60,401
APPEARS IN
RELATED QUESTIONS
Find the middle terms in the expansion of
`(2x^2 - 3/x^3)^10`
Find the Co-efficient of x11 in the expansion of `(x + 2/x^2)^17`
The constant term in the expansion of `(x + 2/x)^6` is
Sum of binomial coefficient in a particular expansion is 256, then number of terms in the expansion is:
Expand `(2x^2 - 3/x)^3`
Expand `(2x^2 -3sqrt(1 - x^2))^4 + (2x^2 + 3sqrt(1 - x^2))^4`
Compute 97
Find the coefficient of x4 in the expansion `(1 + x^3)^50 (x^2 + 1/x)^5`
Find the constant term of `(2x^3 - 1/(3x^2))^5`
If n is an odd positive integer, prove that the coefficients of the middle terms in the expansion of (x + y)n are equal