English

Examine the Continuity of the Following Function : F(X) = X2 - X + 9, For X ≤ 3 = 4x + 3, For X > 3 at X = 3. -

Advertisements
Advertisements

Question

Examine the continuity of the following function :
f(x) = x2 - x + 9,          for x ≤ 3
      = 4x + 3,               for x > 3 
at x = 3.

Sum

Solution

Given :
f(x) = x2 - x + 9,          for x ≤ 3
      = 4x + 3,               for x > 3 
at x = 3.
∴ f(3) = (3)2 - 3 + 9 = 9 - 3 + 9
∴ f(3) = 15
Now `lim_(x -> 3^-) f(x) = lim_( x -> 3) (x^2 - x + 9)`
                                       = (3)2 - (3) + 9
                                       = 15

`lim_(x -> 3^+) f(x) = lim_( x -> 3) (4x + 3)`
                               = 4(3) + 3
                               = 15
Thus from the above
`lim_(x -> 3^-) f(x) = lim_(x -> 3^+) f(x) = 15 = f(3)`

Hense function is continuous at x = 3.

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×