Advertisements
Advertisements
Question
Express the following rational numbers with a positive exponent:
Solution
\[4^3 \times 4^{- 9} \]
\[ = 4^\left( 3 - 9 \right) = 4^{- 6} \]
\[ = \left( \frac{1}{4} \right)^6\] → (am x an = am+n)
APPEARS IN
RELATED QUESTIONS
Simplify and express the result in power notation with positive exponent.
`(1/2^3)^2`
Find the value of the following:
\[\left( \frac{1}{2} \right)^{- 1} + \left( \frac{1}{3} \right)^{- 1} + \left( \frac{1}{4} \right)^{- 1}\]
By what number should 5−1 be multiplied so that the product may be equal to (−7)−1?
Write the following in exponential form:
\[\left( \frac{2}{5} \right)^{- 2} \times \left( \frac{2}{5} \right)^{- 2} \times \left( \frac{2}{5} \right)^{- 2}\]
Evaluate:
(−3)−2
Simplify:
\[\left\{ 4^{- 1} \times 3^{- 1} \right\}^2\]
Simplify:
By what number should \[\left( \frac{1}{2} \right)^{- 1}\] be multiplied so that the product may be equal to \[\left( \frac{- 4}{7} \right)^{- 1} ?\]
Square of \[\left( \frac{- 2}{3} \right)\] is
The multiplicative inverse of 1010 is ______.