Advertisements
Advertisements
Question
Express `-bari-3barj+4bark ` as a linear combination of vectors `2bari+barj-4bark,2bari-barj+3bark`
Solution
`Let bar a = 2hati + hatj - 4hatk , bar b = 2hati -hatj + 3hatk , bar c=3hati+ hatj - 2hatk and r = -hati - 3 hatj + 4hatk`
`Consider, barr = x bara + ybar b + zbar c ….(i)`
where x, y, z are scalars
`-hati - 3 hatj + 4hatk = x(2hati + hatj-4hatk ) + y(2hati-hatj+ 3hatk )+ z(3hati + hatj-2hatk )`
`-hati - 3 hatj + 4hatk = (2x + 2y + 3z)hati + (x - y + z) hatj + (-4x + 3y - 2z)hatk`
By equality of vectors, we get
` 2x + 2y + 3z = -1,x - y + z = -3,-4x + 3y -2z = 4 `
By, Cramer’s rule, we get
`D=|[2,2,3],[1,-1,1],[-4,3,-2]|`
=2(2-3)-2(-2+4)+3(3-4)
=2(-1)-2(2)+3(-1)
=-2-4-3
=-9≠0
`D_x=|[-1,2,3],[-3,-1,1],[4,3,-2]|`
=-1(2-3)-2(6-4)+3(-9+4)
=-1(-1)-2(2)+3(-5)
=1-4-15
=-18
`D_y=|[2,-1,3],[1,-3,1],[-4,4,-2]|`
=2(6-4)+1(-2+4)+3(4-12)
=2(2)+1(2)+3(-8)
=4+2-24
=-18
`D_z=|[2,2,-1],[1,-1,-3],[-4,3,4]|`
=2(-4+9)-2(4-12)-1(3-4)
=2(5)-2(-8)-1(-1)
=10+16+1
=27
`x=D_x/D=-18/-9=2`
`y=D_y/D=-18/-9=2`
`z=D_z/D=27/-9=-3`
`therefore bar r=2 bara+2barb-3barc .`
APPEARS IN
RELATED QUESTIONS
If `bara=bari+2barj, barb=-2bari+barj,barc=4bari+3barj`, find x and y such that `barc=xbara+ybarb`
If`[ bara bar b barc ] ≠ 0 and barp = [ barb xx barc ]/([ bara bar b barc ]), barq = [ barc xx bara ]/([ bara bar b barc ]), barr = [ bara xx barb ]/[ bara bar b barc ]`
then `bara . barp + barb . barq + barc . barr` is equal to ______.