Advertisements
Advertisements
Question
Factorize the following polynomial.
(y2 + 5y) (y2 + 5y – 2) – 24
Solution
(y2 + 5y) (y2 + 5y – 2) – 24
Let y2 + 5y = z
∴ (y2 + 5y) (y2 + 5y – 2) – 24
= z (z – 2) – 24
= z2 – 2z – 24
= z2 – 6z + 4z – 24
= z (z – 6) + 4 (z – 6)
= (z – 6) (z + 4)
= (y2 + 5y – 6) (y2 + 5y + 4) ...(Replace z = y2 + 5y)
= (y2 + 6y – y – 6) (y2 + 4y + y + 4)
= [y (y + 6) – 1 (y + 6)] [y (y + 4) + 1 (y + 4)]
= (y + 6) (y – 1) (y + 4) (y + 1)
APPEARS IN
RELATED QUESTIONS
Use the Factor Theorem to determine whether g(x) is a factor of p(x) in the following case:
p(x) = x3 − 4x2 + x + 6, g(x) = x − 3
Factorise:
x3 – 3x2 – 9x – 5
Find the factor of the polynomial given below.
12x2 + 61x + 77
Find the factor of the polynomial given below.
3y2 – 2y – 1
One of the factors of (25x2 – 1) + (1 + 5x)2 is ______.
Factorise:
84 – 2r – 2r2
Factorise the following:
9x2 – 12x + 3
Factorise the following:
1 – 64a3 – 12a + 48a2
Factorise:
a3 – 8b3 – 64c3 – 24abc
If both x – 2 and `x - 1/2` are factors of px2 + 5x + r, show that p = r.