Advertisements
Advertisements
Question
Figure show the circular coil carrying current I kept very close but not touching at a point A on a straight conductor carrying the same current l. The magnitude of magnetic induction at the centre of the circular coil will be.
Options
`(mu_0l)/(2"r") (1 + 1/pi)`
`(mu_0l)/(2pi"r")`
`(mu_0l)/(2"r")`
None of above
MCQ
Solution
None of above
Explanation:
Magnetic induction at the centre of circular current-carrying loop,
`"B"_1 = (mu_0"i")/"2r"` (downward direction)
Magnetic induction at the centre 0 due to straight wire,
`"B"_2 = (mu_0)/(2pi) * "i"/"r"` (upward direction)
Net magnetic induction at O,
B = B1 - B2 = `(mu_0"i")/"2r" - mu_0/(2pi) * "i"/"r"`
`= (mu_0"i")/"2r" [1 - 1/pi]` [downward direction]
Hence, there are no option correct.
shaalaa.com
Magnetic Lines for a Current Loop
Is there an error in this question or solution?