Advertisements
Advertisements
Question
Find the cube root of the following natural number 157464 .
Solution
Cube root using units digit:
Let is consider 157464.
The unit digit is 4; therefore, the unit digit in the cube root of 157464 is 4.
After striking out the units, tens and hundreds digits of the given number, we are left with 157.
Now, 5 is the largest number whose cube is less than or equal to 157 ( \[5^3 < 157 < 6^3\]) .
Therefore, the tens digit of the cube root 157464 is 5.
Hence,
\[\sqrt[3]{157464} = 54\]
APPEARS IN
RELATED QUESTIONS
Find the smallest number by which the following number must be divided to obtain a perfect cube.
192
Find the cubes of the number 40 .
Which of the following is perfect cube?
1728
Which of the following number is not perfect cubes?
1728
Making use of the cube root table, find the cube root
780 .
Find the cube-root of 729 x 8000
Find the cube-root of 3375 x 512
Find the cube-root of 0.000027
What is the square root of cube root of 46656?
The cube root of 8000 is 200.