Advertisements
Advertisements
Question
Find `dy/dx`, if y = (sin x)tan x – xlog x.
Solution
Let y = (sin x)tan x – xlog x
Let u = (sin x)tan x and v = xlog x
∴ y = u − v, where u and v are differentiable functions of x.
`dy/dx = (du)/dx - (dv)/dx` ....(I)
Now, u = (sin x)tan x, taking log of both the sides we get,
log u = log (sin x)tan x
∴ log u = tan x log (sin x)
Differentiate w. r. t. x.
`d/dx (logu) = d/dx [tanx log (sinx)]`
`1/u (du)/dx = tanx d/dx[log(sinx)] + log(sinx) d/dx(tanx)`
= `tanx. 1/sinx.d/dx.(sinx) + log(sinx).(sec^2)`
`(du)/dx = u[tanx. 1/sinx.(cosx) + sec^2x.log(sinx)]`
`(du)/dx = (sin x)^(tan x) [tanx.cotx + sec^2x.log(sinx)]`
`(du)/dx = (sin x)^tan x [1 + sec^2x.log(sin x)]` ....(II)
And v = xlog x
Taking log on both the sides we get,
log v = log (xlog x)
log v = log x log x = (log x)2
Differentiate w. r. t. x.
`d/dx(logv) = d/dx[(logx)^2]`
`1/v (dv)/dx = 2logx d/dx(logx)`
`(dv)/dx = u[(2logx)/x] = (2x^logx logx)/x` ....(III)
Substituting (II) and (III) in (I) we get,
`dy/dx = (sinx)^tanx [1 + sec^2x.log(sinx)] - (2x^logx logx)/x`