Advertisements
Advertisements
Question
Find k, if the following equations are consistent:
(k – 1)x + (k – 1)y = 17, (k – 1)x + (k – 2)y = 18, x + y = 5
Solution
Given equations are
(k – 1)x + (k – 1)y = 17
(k – 1)x + (k – 2)y = 18
x + y = 5
(k - 1)x + (k - 1)y - 17 = 0
(k - 1)x + (k - 1)y - 18 = 0
x + y - 5 = 0
Since, these equations are consistent.
∴ `|("k"- 1, "k" - 1, -17),("k" - 1, "k" - 2, -18),(1, 1, -5)|` = 0
Applying R1 → R1 – R2, R2 → R2 + R3 we get
⇒`|(0, 1, 1),("k", "k"-1, -23),(1, 1, -5)| = 0`
⇒ 0 (-5k + 5 + 23) - 1 (-5k + 23) +1 [k (k - )] = 0
⇒ 0 (-5k + 28) -1 (-5k + 23) + 1 (k - k + 1) = 0
⇒ 0 + 5k - 23 + k - k + 1
⇒ 5k - 22 = 0
∴ 5k = 22 = 0
∴ `"k" = 22/5`
APPEARS IN
RELATED QUESTIONS
Show that the following equations are consistent: 2x + 3y + 4 = 0, x + 2y + 3 = 0, 3x + 4y + 5 = 0
Find k, if the following equations are consistent: x + 3y + 2 = 0, 2x + 4y – k = 0, x – 2y – 3k = 0
Find the value (s) of k, if the following equations are consistent: 3x + y – 2 = 0, kx + 2y – 3 = 0 and 2x – y = 3
Find the value (s) of k, if the following equations are consistent: kx + 3y + 4 = 0, x + ky + 3 = 0, 3x + 4y + 5 = 0