English

Find k if the following function is continuous at the points indicated against them: f(x)=45x-9x-5x+1(kx-1)(3x-1) for x ≠ 0 = 23 for x = 0, at x = 0 - Mathematics and Statistics

Advertisements
Advertisements

Question

Find k if the following function is continuous at the points indicated against them:

`f(x) = (45^x - 9^x - 5^x + 1)/((k^x - 1)(3^x - 1))`  for x ≠ 0

         = `2/3`                  for x = 0, at x = 0

Sum

Solution

f is continuous at x = 0

∴ `lim_(x→) "f"(x)` = f(0)

∴ `lim_(x→0) ((45)^x - 9^x - 5^x + 1)/(("k"^x - 1)(3^x - 1)) = 2/3`

∴ `lim_(x→0) (9^x*5^x - 9^x - 5^x + 1)/(("k"^x - 1)(3^x - 1)) = 2/3`

∴ `lim_(x→0) (9^x(5^x - 1) - 1(5^x - 1))/(("k"^x - 1)(3^x - 1)) = 2/3`

∴ `lim_(x→0) ((5^x - 1)(9^x - 1))/(("k"^x - 1)(3^x - 1)) = 2/3`

∴ `lim_(x→0) (((5^x - 1)(9^x - 1))/x^2)/((("k"^x - 1)(3^x - 1))/x^2) = 2/3   ...[(because x -> 0"," therefore x ≠ 0 therefore x^2 ≠ 0),("Divide Numerator and Denominator by"  x^2)]`

∴ `(lim_(x→0)((5^x - 1)/x)((9^x - 1)/x))/(lim_(x→0)(("k"^x - 1)/x)((3^x - 1)/x)) = 2/3`

∴ `(log5 * log9)/(log"k" * log 3) = 2/3`  `[because  lim_(x→0) ("a"^x - 1)/x = log "a"]`

∴ `(log 5 * log(3)^2)/(log"k"*log3) = 2/3`

∴ `(2 xx log5 xx log3)/(log"k" xx log3) = 2/3`

∴ `log5/log "k" = 1/3`

∴ 3log 5 = log k
∴ log(5)= log k
∴ (5)3 = k
∴ k = 125

shaalaa.com
Examples of Continuous Functions Whereever They Are Defined
  Is there an error in this question or solution?
Chapter 8: Continuity - Miscellaneous Exercise 8 [Page 113]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Commerce) [English] 11 Standard Maharashtra State Board
Chapter 8 Continuity
Miscellaneous Exercise 8 | Q II. (2) | Page 113
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×