Advertisements
Advertisements
Question
Find the maximum and minimum values of `f(x,y)=x^3+3xy^2-15x^2-15y^2+72x`
Solution
given :
`f(x,y)=x^3+3xy^2-15x^2-15y^2+72x`
`f_x=3x^2+3y^2-30x+72 f_(x x)=6x-30`
`f_y=6xy-30y f_(y y)=6x-30`
`f _xy=6y`
To find stationary values :
`f_x=3x^2+3y^2-30x+72=0 & f_y=6_xy-30y=0`
`y=0 or x=5 `
for` x=5 , y=1,-1`
∴` (x,y)=(5,1),(5,-1)`
Stationary points are : ` (6,0),(4,0),(5,1),(5,-1)`
(i) for point` (6,0),`
`r=f_(x x)= -6, s=f_(xy)=0, f_(yy)=-6`
`rt-s^2=36> 0 and r= 6>0`
function is minimum at (6,0).
`f_min=108`
(ii) for point (4,0)
`r=f_(x x)=-6, s=f_(x y)=0,t=f_(y y)-6`
`rt-s^2=36>0 and r= -6<0`
function is maximum at (4,0).
`f_max=112`
(iii) for point (5,1) and (5,-1) ,
Thr points are neither maximum nor minimum.
∴ The maximum and minimum value of function are 112 and 108 .