Advertisements
Advertisements
Question
Find the nonzero value of k for which the roots of the quadratic equation `9x^2-3kx+k=0` are real and equal.
Solution
The given equation is `9x^2-3kx+k=0`
This is of the form `ax^2+bx+c=0,` where `a=9, b=-3k and c=k`
∴ `D=b^2-4ac=(-3k)^2-4xx9xxk=9k^2-36k`
The given equation will have real and equal roots if D = 0.
∴` 9k^2-36k=0`
⇒` 9k(k-4)=0`
⇒ `k=0 or k-4=0`
⇒`k=0 or k=4`
But, k ≠ 0 (Given)
Hence, the required values of k is 4.
APPEARS IN
RELATED QUESTIONS
Write the discriminant of the following quadratic equations:
`sqrt3x^2+2sqrt2x-2sqrt3=0`
In the following, determine whether the given quadratic equation have real roots and if so, find the roots:
x2 - 2x + 1 = 0
`2x^2+x-6=0`
`sqrt2x^2+7+5sqrt2=0`
`4sqrt3x^2+5x-2sqrt3=0`
`2sqrt3x^2-5x+sqrt3=0`
`x^2-2ax+(a^2-b^2)=0`
`x^2-2ax-(4b^2-a^2)=0`
`x^2+5x-(a^+a-6)=0`
`4x^2-4bx-(a^2-b^2)=0`