Advertisements
Advertisements
Question
Find:
`intsec^3 thetaxxd theta`
Sum
Solution
Let `I = intsec^3 thetaxxd theta`
Integrating by parts, we have u = sec θ, v = sec2θ
So, `I=intu.v.d theta`
`I = sec theta int sec^2theta.d theta-int {{d(sec theta))/(d theta) . int sec^2 theta.d theta} d theta`
`I = sec theta .tan theta - int sec theta. tan theta. tan theta. d theta`
`I = sec theta.tan theta - int sec theta.tan^2theta. d theta`
`I = sec theta. tan theta - int sec theta.(sec^2 theta - 1). d theta`
`I = sec theta.tan theta - int sec^3theta + int sec theta. d theta`
`I = sec theta.tan theta - I + ln |sec theta + tan theta| + C`
`2I = sec theta.tan theta + ln |sec theta + tan theta| + C`
`I = 1/2 [sec theta.tan theta + ln |sec theta + tan theta| + C]`
shaalaa.com
Is there an error in this question or solution?