Advertisements
Advertisements
Question
Find `int_ (sin2"x")/((sin^2 "x"+1)(sin^2"x"+3))d"x"`
Sum
Solution
`int_ (sin2"x")/((sin^2 "x"+1)(sin^2"x"+3))d"x"`
⇒ `I = int_ (2sin"x"·cos"x")/((sin^2 "x"+1)(sin^2"x"+3))d"x"`
let sin2 x + 3 = t ⇒ 2sin x·cos xdx = dt
Therefore,
`I = int_ (d"t")/(("t" - 2)"t")`
⇒ `I = 1/2 int_ ((1)/("t"-2)- 1/"t")d"t"`
⇒ `I = 1/2 [ "In" ( "t" -2) - "In" "t"] + c`
⇒ `I = 1/2 "In" (("t"-2)/("t")) + c`
⇒ `I = "In" sqrt(("t"-2)/("t")) + c`
⇒ `I = "In" sqrt((sin^2 "x" +1)/(sin^2 "x"+3) + c`
shaalaa.com
Is there an error in this question or solution?