English

Find the derivative of the following function: 2tan x – 7sec x - Mathematics

Advertisements
Advertisements

Question

Find the derivative of the following function:

2tan x – 7sec x

Sum

Solution

Let f (x) = 2 tan x – 7 sec x Accordingly, from the first principle,

f'(x) = `lim_(h->0) (f(x + h) - f(x))/h`

= `lim_(h->0)1/h [2tan (x + h) - 7 sec (x + h) -2 tan x + 7sec x]`

= `2 lim_(h->0)1/h[2{tan (x + h) - tan x} - 7{sec (x + h) -sec x}]`

= `2 lim_(h->0)1/h[tan (x + h) - tan x] - 7lim_(h->0)1/h[sec (x + h) -sec x]`

= `2 lim_(h->0) 1/h [sin (x + h)/(cos (x + h))-(sinx)/(cos x)] -7 lim_(h->0)1/h [1/(cos (x + h)) - 1/(cos x)]`

= `2 lim_(h->0)1/h [(sin(x + h) cos x - sin x cos (x + h))/(cos x cos (x + h))] -7lim_(h->0)1/h[(cos x - cos (x + h))/(cos x cos (x + h))]`

= `2 lim_(h->0) [(sin (x + h - x))/(cos x cos (x + h))] -7 lim_(h->0)[(-2 sin ((x + x + h)/2) sin ((x - x - h)/(2)))/(cos x cos (x + h))]`

= `2 lim_(h->0) [((sin h)/h) 1/(cos x cos (x +h))] - 7 lim_(h->0)1/h[(-2 sin ((2x + h)/h) sin (-h/2))/(cos x cos (x + h))]`

= `2 (lim_(h->0)(sin h)/h) (lim_(h->0) 1/(cos x cos (x + h)))-7 (lim_(h->0) (sin  h/2)/(h/2)) (lim_(h ->0) (sin ((2x + h)/2))/(cos x cos (x + h)))`

= 2.1 `1/(cos x cos x) - 7.1 (sin x/(cos x cos x))`

= 2 sec2 x - 7 sec x tan x

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Exercise 13.2 [Page 313]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Exercise 13.2 | Q 11.7 | Page 313

RELATED QUESTIONS

Find the derivative of `x^n  + ax^(n-1) + a^2 x^(n-2) + ...+ a^(n -1) x + a^n` for some fixed real number a.


For some constants a and b, find the derivative of (x – a) (x – b).


For some constants a and b, find the derivative of (ax2 + b)2.


Find the derivative of `(x^n - a^n)/(x -a)` for some constant a.


Find the derivative of the following function.

sin x cos x 


Find the derivative of the following function:

3cot x + 5cosec x


Find the derivative of the following function:

5sin x – 6cos x + 7


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax2 + sin x) (p + q cos x)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`x/(1 + tan x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + sec x) (x – tan x)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`x/(sin^n x)`


Find the derivative of f(x) = ax + b, where a and b are non-zero constants, by first principle


Find the derivative of f(x) = x3, by first principle.


Find the derivative of f(x) = `1/x` by first principle.


Find the derivative of f(x) = sin x, by first principle.


Find the derivative of `cosx/(1 + sinx)`


`(x^4 + x^3 + x^2 + 1)/x`


`(3x + 4)/(5x^2 - 7x + 9)`


`(x^5 - cosx)/sinx`


(sin x + cos x)2


(2x – 7)2 (3x + 5)3 


x2 sin x + cos 2x


sin3x cos3x


If `y = sqrt(x) + 1/sqrt(x)`, then`(dy)/(dx)` at x = 1 is  ______.


if `f(x) = (x - 4)/(2sqrt(x))`, then f'(1) is ______.


If `y = (sin(x + 9))/cosx` then `(dy)/(dx)` at x = 0 is ______.


If `f(x) = 1 + x + x^2/2 + ... + x^100/100`, then f'(1) is equal to ______.


If `f(x) = x^100 + x^99 .... +  x + 1`, then f'(1) is equal to ______.


If `y = 1 + x/(1!) + x^2/(2!) + x^3/(3!) + ...,` then `(dy)/(dx)` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×