Advertisements
Advertisements
Question
Find the nth terms of the sequences: 0.5, 0.55, 0.555, …
Solution
Let t1 = 0.5, t2 = 0.55, t3 = 0.555 and so on.
t1 = 0.5
t2 = 0.55 = 0.5 + 0.05
t3 = 0.555 = 0.5 + 0.05 + 0.005
∴ tn = 0.5 + 0.05 + 0.005 + ... upto n terms
But 0.5, 0.05, 0.005, … upto n terms are in
G.P. with a = 0.5 and r = 0.1
∴ tn = the sum of first n terms of the G.P.
∴ tn = `0.5{(1 - (0.1)^"n")/(1 - 0.1)}`
∴ tn = `0.5/0.9{1 - (0.1)^"n"}`
∴ tn = `5/9{1 - (0.1)^"n"}`
APPEARS IN
RELATED QUESTIONS
For the following G.P.'s, find Sn: 3, 6, 12, 24, ...
For a G.P., if a = 2, r = `-2/3`, find S6.
For a G.P., if t3 = 20, t6 = 160, find S7.
Find the sum to n term: 0.4 + 0.44 + 0.444 + …
Find the nth terms of the sequences: 0.2, 0.22, 0.222, …
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n - S2n) = ( S2n - Sn ) 2.
If `S_n ,S_(2n) ,S_(3n)` are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that `S_n (S_(3n) - S_(2n)) = (S_(2n) - S_n)^2`
If for a sequence, `t_n = (5^(n-3)) / (2^(n-3))`, show that the sequence is a G.P. Find its first term and the common ratio.
If Sn, S2n, S3n are the sum of n, 2n, and 3n terms of a G.P. respectively, then verify that `S_n (S_(3n) - S_(2n)) = (S_(2n) - S_n)^2`.
If for a sequence, `t_n = 5^(n-3)/2^(n-3)`, show that the sequence is a G.P. Find its first term and the common ratio.
If for a sequence, `t_n = 5^(n-3)/2^(n-3)`, show that the sequence is a G.P. Find its first term and the common ratio.
If Sn , S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn(S3n − S2n) = (S2n − Sn)2
If `S_n, S_(2n), S_(3n)` are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that `S_n (S_(3n) - S_(2n)) = (S_(2n) - S_n)^2`.
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n - S2n) = (S2n - Sn)2.
If `S_n, S_(2n), S_(3n)` are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that `S_n(S_(3n) - S_(2n)) = (S_(2n) - S_n)^2`.