English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

Find the parametric vector, non-parametric vector and Cartesian form of the equation of the plane passing through the point (3, 6, – 2), (– 1, – 2, 6) and (6, 4, – 2) - Mathematics

Advertisements
Advertisements

Question

Find the parametric vector, non-parametric vector and Cartesian form of the equation of the plane passing through the point (3, 6, – 2), (– 1, – 2, 6) and (6, 4, – 2)

Sum

Solution

`vec"a" = 3hat"i" + 6hat"j" - 2hat"k"`

`vec"b" = -hat"i" - 2hat"j" + 6hat"k"`

`vec"b" - vec"a" = -4hat"i" - 8hat"j" + 8hat"k"`

`vec"c" - vec"a" = 3hat"i" - 2hat"j"`

`(vec"b" - vec"a") xx (vec"c" - vec"a") = |(hat"i", hat"j", hat"k"),(-4, -8, 8),(3, -2, 0)|`

= `hat"i"(0 + 16) - hat"j"(0 - 24) + hat"k"(8 + 24)`

= `16hat"i" + 24hat"j" + 32hat"k"`

Parametric equation:

`vec"r" = vec"a" + "s"(vec"b" - vec"a") + "t"(vec"c" - vec"a")`

`vec"r" = (3hat"i" + 6hat"j" - 2hat"k") + "s"(-4hat"i" - 8hat"j" + 8hat"k") + "t"(3hat"i" - 2hat"j"), "s", "t" ∈ "R"`

Non-parametric equation:

`(vec"r" - vec"a")*[(vec"b" - vec"a") xx (vec"c" - vec"a")] = vec0`

`(vec"r" - vec"a")*(16hat"i" + 24hat"j" + 32hat"k") = vec0`

`[vec"r"*(16hat"i" + 24hat"j" + 32hat"k")] = (3hat"i" + 6hat"j" - 2hat"k")*(16hat"i" + 24hat"j" + 32hat"k")`

`vec"r"(16hat"i" + 24hat"j" + 32hat"k")` = 128

Cartesian equation:

⇒ `vec"r"(2hat"i" + 3hat"j" + 4hat"k")` = 16

⇒ 2x + 3y + 4z – 16 = 0

shaalaa.com
Different Forms of Equation of a Plane
  Is there an error in this question or solution?
Chapter 6: Applications of Vector Algebra - Exercise 6.7 [Page 263]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 6 Applications of Vector Algebra
Exercise 6.7 | Q 6 | Page 263

RELATED QUESTIONS

A plane passes through the point (− 1, 1, 2) and the normal to the plane of magnitude `3sqrt(3)` makes equal acute angles with the coordinate axes. Find the equation of the plane


Find the intercepts cut off by the plane `vec"r"*(6hat"i" + 45hat"j" - 3hat"k")` = 12 on the coordinate axes


Find the non-parametric form of vector equation and cartesian equation of the plane passing through the point (1, − 2, 4) and perpendicular to the plane x + 2y − 3z = 11 and parallel to the line `(x + 7)/3 = (y + 3)/(-1) = z/1`


Find the non-parametric form of vector equation and Cartesian equations of the plane `vec"r" = (6hat"i" - hat"j" + hat"k") + "s"(-hat"i" + 2hat"j" + hat"k") + "t"(-5hat"i" - 4hat"j" - 5hat"k")`


Choose the correct alternative:

If `vec"a", vec"b", vec"c"` are three unit vectors such that `vec"a"` is perpendicular to `vec"b"`, and is parallel to `vec"c"` then `vec"a" xx (vec"b" xx vec"c")` is equal to


Choose the correct alternative:

If `vec"a", vec"b", vec"c"` are three non-coplanar vectors such that `vec"a" xx (vec"b" xx vec"c") = (vec"b" + vec"c")/sqrt(2)` then the angle between `vec"a"` and `vec"b"` is


Choose the correct alternative:

If the volume of the parallelepiped with `vec"a" xx vec"b", vec"b" xx vec"c", vec"c" xx vec"a"` as coterminous edges is 8 cubic units, then the volume of the parallelepiped with `(vec"a" xx vec"b") xx (vec"b" xx vec"c"), (vec"b" xx vec"c") xx (vec"c" xx vec"a")` and `(vec"c" xx vec"a") xx (vec"a" xx vec"b")` as coterminous edges is


Choose the correct alternative:

The angle between the lines `(x - 2)/3 = (y + 1)/(-2)`, z = 2 ad `(x - 1)/1 = (2y + 3)/3 = (z + 5)/2` is


Choose the correct alternative:

The angle between the line `vec"r" = (hat"i" + 2hat"j" - 3hat"k") + "t"(2hat"i" + hat"j" - 2hat"k")` and the plane `vec"r"(hat"i" + hat"j") + 4` = 0 is


Choose the correct alternative:

Distance from the origin to the plane 3x – 6y + 2z + 7 = 0 is


Choose the correct alternative:

If the planes `vec"r"(2hat"i" - lambdahat"j" + hatk")` =  and `vec"r"(4hat"i" + hat"j" - muhat"k")` = 5 are parallel, then the value of λ and µ are


Let d be the distance between the foot of perpendiculars of the points P(1, 2, –1) and Q(2, –1, 3) on the plane –x + y + z = 1. Then d2 is equal to ______.


A plane P contains the line x + 2y + 3z + 1 = 0 = x – y – z – 6, and is perpendicular to the plane –2x + y + z + 8 = 0. Then which of the following points lies on P?


The point in which the join of (–9, 4, 5) and (11, 0, –1) is met by the perpendicular from the origin is ______.


Consider a plane 2x + y – 3z = 5 and the point P(–1, 3, 2). A line L has the equation `(x - 2)/3 = (y - 1)/2 = (z - 3)/4`. The co-ordinates of a point Q of the line L such that `vec(PQ)` is parallel to the given plane are (α, β, γ), then the product βγ is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×