Advertisements
Advertisements
Question
Find the point on the curve y2 = 4x, which is nearest to the point (2, 1).
Solution
Let P(x, y) be a point on the curve y2 = 4x
which is nearest to the point A(2, 1).
Let D = AP
∴ D2 = (x – 2)2 + (y – 1)2
Put x = `y^2/4`
∴ D2 = `(y^2/4 - 2)^2 + (y - 1)^2`
Differentiating w.r.t. y,
`2D*(dD)/dy = 2(y^2/4 - 2)((2y)/4) + 2(y - 1)`
∴ `2D (dD)/dy = y(y^2/4 - 2) + 2y - 2`
`2D*(dD)/dy = y^3/4 - 2y + 2y - 2`
∴ `D*(dD)/dy = y^3/8 - 1`
`\implies (dD)/dy = 1/D(y^2/8 - 1)`
For extreme value of D, put
`(dD)/dy` = 0 ...(1)
∴ `1/D(y^3/8 - 1)` = 0
But D > 0
`\implies y^3/8 - 1` = 0
∴ y3 = 8
∴ y = 2
Now `D*(dD)/dy = y^3/8 - 1`
Again differentiating w.r.t. y,
`D(d^2D)/(dy^2) + ((dD)/dy)^2 = 3/8y^2`
But `(dD)/dy` = 0 ...[From (1)]
∴ `D*(d^2D)/(dy^2) = 3/8y^2`
∴ `(d^2D)/(dy^2) = 1/D*3/8y^2`
∴ `((d^2D)/dy^2)_(y = 2) = 1/D*3/8 xx 4`
= `3/(2D) > 0` ...(∵ D > 0)
∴ D is minimum when y = 2
∴ y2 = 4x gives x = 1
∴ The point (1, 2) is the point nearest to (2, 1).