Advertisements
Advertisements
Question
Find the price, if the marginal revenue is 28 and elasticity of demand is 3.
Solution
Given, marginal revenue (Rm) = 28 and
elasticity of demand (η) = 3
`"R"_"m" = "P"(1 - 1/eta)`
∴ `28 = "P" (1 - 1/3)`
∴ 28 = `"P" (2/3)`
∴ `(28 xx 3)/2` = P
∴ P = 42
∴ price = ₹ 42
APPEARS IN
RELATED QUESTIONS
Find the marginal revenue if the average revenue is 45 and elasticity of demand is 5.
Find the elasticity of demand, if the marginal revenue is 50 and price is Rs 75.
The demand function of a commodity at price P is given as, D = `40 - "5P"/8`. Check whether it is increasing or decreasing function.
The total cost function for production of x articles is given as C = 100 + 600x – 3x2 . Find the values of x for which total cost is decreasing.
Find the price for the demand function D = `((2"p" + 3)/(3"p" - 1))`, when elasticity of demand is `11/14`.
For the demand function D = 100 – `p^2/2`. Find the elasticity of demand at p = 10 and comment on the results.
For the demand function D = 100 – `"p"^2/2`. Find the elasticity of demand at p = 6 and comment on the results.
A manufacturing company produces x items at a total cost of ₹ 40 + 2x. Their price is given as p = 120 – x. Find the value of x for which also find an elasticity of demand for price 80.
Fill in the blank:
A road of 108 m length is bent to form a rectangle. If the area of the rectangle is maximum, then its dimensions are _______.
If the marginal revenue is 28 and elasticity of demand is 3, then the price is ______.
If the elasticity of demand η = 1, then demand is ______.
If 0 < η < 1, then the demand is ______.
The manufacturing company produces x items at the total cost of ₹ 180 + 4x. The demand function for this product is P = (240 − 𝑥). Find x for which profit is increasing
A manufacturing company produces x items at a total cost of ₹ 40 + 2x. Their price per item is given as p = 120 – x. Find the value of x for which elasticity of demand for price ₹ 80.
Solution: Total cost C = 40 + 2x and Price p = 120 – x
p = 120 – x
∴ x = 120 – p
Differentiating w.r.t. p,
`("d"x)/("dp")` = `square`
∴ Elasticity of demand is given by η = `- "P"/x*("d"x)/("dp")`
∴ η = `square`
When p = 80, then elasticity of demand η = `square`
Complete the following activity to find MPC, MPS, APC and APS, if the expenditure Ec of a person with income I is given as:
Ec = (0.0003)I2 + (0.075)I2
when I = 1000
If elasticity of demand η = 0 then demand is ______.
If 0 < η < 1 then the demand is ______.