Advertisements
Advertisements
Question
Find the shortest distance between the lines l1 and l2 whose vector equations are `overset->r = (-hati -hatj -hatk) + lambda(7hati - 6hatj + hatk) "and" overset->r = (3hati + 5hatj + 7hatk) + mu(hati - 2hatj +hatk)` where λ and μ are parameters.
Solution
l1: `overset->r = (-hati -hatj -hatk) + lambda(7hati - 6hatj + hatk)`
`overset->a_1 = -hati -hatj -hatk`
`overset->b_1 = 7hati - 6hatj + hatk`
l2: `overset->r = (3hati + 5hatj + 7hatk) + mu(hati - 2hatj +hatk)`
`overset->a_2 = 3hati + 5hatj + 7hatk`
`overset->b_2 = hati - 2hatj +hatk`
∵ `a_1/a_2 ≠ b_1/b_2 ≠ c_1/c_2`
∴ l1 and l2 are not parallel.
∴ l1 and l2 are skew lines.
`overset->b_1 xx overset->b_2 = |(hati,hatj,hatk),(7,-6,1),(1,-2,1)|`
= `hati [-6 + 2] - hatj [7 - 1] + hatk [-14 + 6]`
= `-4hati - 6hatj - 8hatk`
= `(-2)(2hati + 3hatj + 4hatk)`
`(a_2 - a_1) = 4hati + 6hatj + 8hatk = 2[2hati + 3hatj + 4hatk]`
For skew lines,
D = `|((a_2 - a_1).(overset->b_1 xx overset->b_2))/|(overset->b_1 xx overset->b_2)||`
= `|((2[2hati + 3hatj + 4hatk]).(-2)(2hati + 3hatj + 4hatk))/sqrt((-2)^2(4 + 9 + 16))|`
= `|(2(4 + 9 + 16) (-2))/(2sqrt29)|`
= `(2 xx 29)/sqrt29`
D = `2sqrt29` unit