Advertisements
Advertisements
Question
Find the value of k so that sum of the roots of the quadratic equation is equal to the product of the roots:
(k + 1)x2 + (2k + 1)x - 9 = 0, k + 1 ≠ 0.
Solution
The given equation is
(k + 1)x2 + (2k + 1)x - 9 = 0
Here, a = k + 1, b = (2k + 1) and c = -9.
Sum of the roots α + β = `(- (2k + 1))/(k + 1)`
and αβ = `c/a = (-9)/(k + 1)`
Since, Sum of the roots = Product of the roots
Then, `((2k +1)/(k + 1)) = (9)/(k + 1)`
⇒ 2k + 1 = 9
⇒ 2k = 9 - 1
⇒ 2k = 8
⇒ k = `(8)/(2)`
= 4
⇒ k = 4.
APPEARS IN
RELATED QUESTIONS
Find the nature of the roots of the following quadratic equation. If the real roots exist, find them:
2x2 - 3x + 5 = 0
The 4th term of an A.P. is 22 and the 15th term is 66. Find the first terns and the common
difference. Hence find the sum of the series to 8 terms.
Determine the nature of the roots of the following quadratic equation:
`3/5x^2-2/3x+1=0`
In each of the following, determine whether the given numbers are roots of the given equations or not; x2 – x + 1 = 0; 1, – 1
If `sqrt(2)` is a root of the equation `"k"x^2 + sqrt(2x) - 4` = 0, find the value of k.
If a = 1, b = 4, c = – 5, then find the value of b2 – 4ac
Complete the following activity to find the value of discriminant for quadratic equation 4x2 – 5x + 3 = 0.
Activity: 4x2 – 5x + 3 = 0
a = 4 , b = ______ , c = 3
b2 – 4ac = (– 5)2 – (______) × 4 × 3
= ( ______ ) – 48
b2 – 4ac = ______
(x2 + 1)2 – x2 = 0 has:
Which of the following equations has the sum of its roots as 3?
A quadratic equation with integral coefficient has integral roots. Justify your answer.