Advertisements
Advertisements
Question
Find the value(s) of k for which each of the following quadratic equation has equal roots: (k + 4)x2 + (k + 1)x + 1 =0 Also, find the roots for that value (s) of k in each case.
Solution
(k + 4)x2 + (k + 1)x + 1 =0
Here a = k + 4, b = k + 1, c = 1
∴ D = b2 4ac
= (k + 1)2 – 4 x (k + 4) x 1
= k2 + 2k + 1 – 4k – 16
= k2 - 2k - 15
∵ Root are equal
∴ k2 – 2k – 15 = 0
⇒ k2 – 5k + 3k – 15 = 0
⇒ k(k – 5) + 3(k – 5) = 0
⇒ (k – 5)(k + 3) = 0
Either k – 5 = 0,
then k = 5
or
k + 3 = 0,
then k = –3
(a) When k = 5, then
x = `(-b ± sqrt("D"))/(2a) = (-b)/(2a)`
= `(-k - 1)/(2(k + 4)) = (-5 - 1)/(2(5 + 4)`
= `(-6)/(18) = (-1)/(3)`
∴ x = `(-1)/(3), (-1)/(3)`
(b) When k = –3, then
x = `(-b ± sqrt("D"))/(2a) = (-b)/(2a)`
= `(-k - 1)/(2(k + 4)) = ((-3) - 1)/(2(-3 + 4)`
= `(2)/(2 xx 1)` = 1
∴ x = 1, 1.
APPEARS IN
RELATED QUESTIONS
Find the value of the discriminant in the following quadratic equation:
2x2 - 3x + 1 = O
Determine the nature of the roots of the following quadratic equation :
2x2 -3x+ 4= 0
`(2)/x^2 - (5)/x + 2` = 0
Solve for x : `9^(x + 2) -6.3^(x + 1) + 1 = 0`.
Determine whether the given quadratic equations have equal roots and if so, find the roots:
x2 + 5x + 5 = 0
Complete the following activity to find the value of discriminant for quadratic equation 4x2 – 5x + 3 = 0.
Activity: 4x2 – 5x + 3 = 0
a = 4 , b = ______ , c = 3
b2 – 4ac = (– 5)2 – (______) × 4 × 3
= ( ______ ) – 48
b2 – 4ac = ______
α and β are the roots of 4x2 + 3x + 7 = 0, then the value of `1/α + 1/β` is:
The value of k for which the equation x2 + 2(k + 1)x + k2 = 0 has equal roots is:
Find the value(s) of 'a' for which the quadratic equation x2 – ax + 1 = 0 has real and equal roots.
Which of the following equations has two real and distinct roots?