Advertisements
Advertisements
Question
Find the values of k for which the roots are real and equal in each of the following equation:
x2 - 2kx + 7k - 12 = 0
Solution
The given quadric equation is x2 - 2kx + 7k - 12 = 0, and roots are real and equal
Then find the value of k.
Here,
a = 1, b = -2k and c = 7k - 12
As we know that D = b2 - 4ac
Putting the value of a = 1, b = -2k and c = 7k - 12
= (-2k)2 - 4 x (1) x (7k - 12)
= 4k2 - 28k + 48
The given equation will have real and equal roots, if D = 0
4k2 - 28k + 48 = 0
4(k2 - 7k + 12) = 0
k2 - 7k + 12 = 0
Now factorizing of the above equation
k2 - 7k + 12 = 0
k2 - 4k - 3k + 12 = 0
k(k - 4) - 3(k - 4) = 0
(k - 3)(k - 4) = 0
So, either
k - 3 = 0
k = 3
Or
k - 4 = 0
k = 4
Therefore, the value of k = 4, 3.
APPEARS IN
RELATED QUESTIONS
Form the quadratic equation if its roots are –3 and 4.
Find the values of k for which the roots are real and equal in each of the following equation:
x2 - 2(5 + 2k)x + 3(7 + 10k) = 0
Find the values of k for which the roots are real and equal in each of the following equation:
(k + 1)x2 - 2(3k + 1)x + 8k + 1 = 0
Find the least positive value of k for which the equation x2 + kx + 4 = 0 has real roots.
Find the values of k for which the given quadratic equation has real and distinct roots:
kx2 + 2x + 1 = 0
If the roots of the equations ax2 + 2bx + c = 0 and `bx^2-2sqrt(ac)x+b = 0` are simultaneously real, then prove that b2 = ac.
Without actually determining the roots comment upon the nature of the roots of each of the following equations:
`2sqrt(3)x^2 - 2sqrt(2)x - sqrt(3) = 0`
If a = 1, b = 4, c = – 5, then find the value of b2 – 4ac
If b and c are odd integers, then the equation x2 + bx + c = 0 has ______.
If the quadratic equation ax2 + bx + c = 0 has two real and equal roots, then 'c' is equal to ______.