English

Find |x→|, if for a unit vector a→,(x→-a→)⋅(x→+a→) = 12 -

Advertisements
Advertisements

Question

Find `|vecx|`, if for a unit vector `veca, (vecx - veca) * (vecx + veca)` = 12

Options

  • `sqrt(13)`

  • `sqrt(26)`

  • `sqrt(14)`

  • `sqrt(18)`

MCQ

Solution

`sqrt(13)`

Explanation:

`(vecx - veca)(vecx + veca) = vecx(vecx + veca) - veca(vecx + veca)`

= `|vecx|^2 + vecx * veca - veca * vecx - |veca|^2`

 = `|vecx|^2 + vecx * veca - vecx * veca - |veca|^2`

Now, `|veca| = 1, (vecx + veca)(vecx + veca)` = 12

∴ `|vecx^2| - |veca|^2` = 12

or `|vecx^2|` = 12 + 1 ⇒ `|vecx|^2 = sqrt(13)` 

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×