Advertisements
Advertisements
Question
Find `|vecx|`, if for a unit vector `veca, (vecx - veca) * (vecx + veca)` = 12
Options
`sqrt(13)`
`sqrt(26)`
`sqrt(14)`
`sqrt(18)`
MCQ
Solution
`sqrt(13)`
Explanation:
`(vecx - veca)(vecx + veca) = vecx(vecx + veca) - veca(vecx + veca)`
= `|vecx|^2 + vecx * veca - veca * vecx - |veca|^2`
= `|vecx|^2 + vecx * veca - vecx * veca - |veca|^2`
Now, `|veca| = 1, (vecx + veca)(vecx + veca)` = 12
∴ `|vecx^2| - |veca|^2` = 12
or `|vecx^2|` = 12 + 1 ⇒ `|vecx|^2 = sqrt(13)`
shaalaa.com
Is there an error in this question or solution?