Advertisements
Advertisements
Question
For a sequence Sn = 4(7n – 1), verify whether the sequence is a G.P.
Solution
Sn = 4(7n – 1)
∴ Sn–1 = 4(7n–1 – 1)
But, tn = Sn – Sn–1
= 4(7n – 1) – 4(7n–1 – 1)
= 4(7n – 1– 7n– 1 + 1)
= 4(7n–1+1 – 7n–1)
= 4.7n–1 (7 – 1)
∴ tn = 24.7n–1
∴ tn+1 = 24(7)n+1–1
= 24(7)n
The sequence (tn) is a G.P., if `("t"_("n" + 1))/"t"_"n"` = constant for all n ∈ N.
∴ `("t"_("n" + 1))/"t"_"n" = (24(7)^"n")/(24(7)^("n" - 1)`
= 7 = constant, for all n ∈ N
∴ the sequence is a G.P.
APPEARS IN
RELATED QUESTIONS
Verify whether the following sequence is G.P. If so, find tn.
`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5)), ...`
For the G.P., if r = `1/3`, a = 9, find t7.
For the G.P., if a = `7/243, "r" = 1/3`, find t3.
For the G.P., if a = 7, r = – 3, find t6.
For the G.P., if a = `2/3`, t6 = 162, find r.
Find five numbers in G. P. such that their product is 1024 and fifth term is square of the third term.
If p, q, r, s are in G. P., show that p + q, q + r, r + s are also in G. P.
For a sequence, if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.
Find three numbers in G.P., such that their sum is 35 and their product is 1000.
If for a sequence, `t_n = (5^(n-3))/(2^(n-3))`, show that the sequence is a G.P. Find its first term and the common ratio.
Verify whether the following sequences are G.P. If so, find tn.
`sqrt5, 1/sqrt5, 1/(5sqrt5), 1/(25sqrt5), ...`
Verify whether the following sequence is G.P. If so, find tn:
`sqrt5, 1/sqrt5, 1/(5 sqrt5), 1/(25 sqrt5), ...`
For the G.P. if a = `2/3`, t6 = 162, find r.
For the G.P. if a = `2/3`, t6 = 162, find `r`
Verify whether the following sequence is G.P. If so, find tn.
`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5)), ...`
Verify whether the following sequence is G.P. If so, find tn.
`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt5), ...`
If for a sequence, `t_n = (5^(n - 3))/(2^(n - 3))`, show that the sequence is a G.P.
Find its first term and the common ratio.
Verify whether the following sequence is G.P. If so, find tn.
`sqrt5,1/(sqrt5),1/(5sqrt5), 1/(25sqrt5)`, ......