English

For all complex numbers z1, z2 satisfying |z1| = 12 and |z2 - 3 - 4i| = 5, the minimum value of |z1 - z2| is ______. -

Advertisements
Advertisements

Question

For all complex numbers z1, z2 satisfying |z1| = 12 and |z2 - 3 - 4i| = 5, the minimum value of |z1 - z2| is ______.

Options

  • 0

  • 2

  • 7

  • 17

MCQ
Fill in the Blanks

Solution

For all complex numbers z1, z2 satisfying |z1| = 12 and |z2 - 3 - 4i| = 5, the minimum value of |z1 - z2| is 2.

Explanation:

We have,

|z1| = |z2 - (3 + 4i) + 3 + 4i|

⇒ |z1| ≤ |z2 - (3 + 4i)| + |3 + 4i|

⇒ |z1| ≤ 5 + 5    ....[∵ |3 + 4i| = `sqrt(9 + 16)` = 5]

⇒ |z1| ≤ 10 ⇒ - |z2| ≥ - 10

⇒ |z1| - |z2| ≥ |z1| - 10

⇒ |z1| - |z2| ≥ 12 - 10

⇒ |z1| - |z2| ≥ 2

⇒ |z1 - z2| ≥ 2     .....[∵ |z1 - z2| ≥ |z1| - |z2|]

∴ minimum value of |z1 - z2| = 2

shaalaa.com
Argand Diagram Or Complex Plane
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×