Advertisements
Advertisements
Question
For certain data, the following information is available. Obtain the combined standard deviation.
X | Y | |
Mean | 13 | 17 |
S.D. | 3 | 2 |
Size | 20 | 30 |
Options
9.84
1.54
3.14
15.4
MCQ
Fill in the Blanks
Solution
3.14
Explanation:
Here, `overlinex = 13, overliney = 17, sigma_x = 3, sigma_y = 2, n_x = 20, n_y = 30`
Combined mean `(overlinex_c) = (n_x overlinex + n_y overliney)/(n_x + n_y)`
= `(20(13) + 30(17))/(20 + 30)`
= `(260 + 510)/50 = 770/50`
= 15.4
Now, `d_x = overlinex - overlinex_c = 13 - 15.4 = -2.4`
`d_y = overliney - overlinex_c = 17 - 15.4 = 1.6`
∴ Combined standard deviation `(sigma_c)`
= `sqrt((n_x(sigma_x^2 + d_x^2) + n_y(sigma_y^2 + d_y^2))/(n_x + n_y))`
= `sqrt((20[3^2 + (-2.4)^2] + 30(2^2 + 1.6^2))/(20 + 30)) = 3.14`
shaalaa.com
Standard Deviation
Is there an error in this question or solution?