Advertisements
Advertisements
Question
For a certain distribution, mode and median were found to be 1000 and 1250 respectively. Find mean for this distribution using an empirical relation.
Solution
There is an empirical relationship between the three measures of central tendency:
3median = mode + 2Mean
`⟹Mean=(3Median−Mode)/2`
`=(3(1250)−1000)/2`
=1375
Thus, the mean is 1375.
APPEARS IN
RELATED QUESTIONS
Explain the meaning of the term Class-mark.
Explain the meaning of the term Frequency.
Explain the meaning of the term True class limits.
Find the mean, median and mode of the following data:
Class | 0 – 10 | 10 – 20 | 20 – 30 | 30 – 40 | 40 – 50 | 50 – 60 | 60 – 70 |
Frequency | 4 | 4 | 7 | 10 | 12 | 8 | 5 |
Find the mean, median and mode of the following data
Class | 0 – 20 | 20 – 40 | 40 – 60 | 60 – 80 | 80 – 100 | 100 – 120 | 120 – 140 |
Frequency | 6 | 8 | 10 | 12 | 6 | 5 | 3 |
The observation 29, 32, 48, 50, x, x+2, 72, 78, 84, 95 are arranged in ascending order. What is the value of x if the median of the data is 63?
In the following data, find the values of p and q. Also, find the median class and modal class.
Class | Frequency (f) | Cumulative frequency (cf) |
100 – 200 | 11 | 11 |
200 – 300 | 12 | p |
300 – 400 | 10 | 33 |
400- 500 | Q | 46 |
500 – 600 | 20 | 66 |
600 – 700 | 14 | 80 |
Define primary data and secondary data.
Explain the meaning of the following terms: Variate
Explain the meaning of the following terms: Class mark
Explain the meaning of the following terms: True Class Limits
The times, in seconds, taken by 150 athletes to run a 110 m hurdle race are tabulated below:
Class | 13.8 – 14 | 14 – 14.2 | 14.2 – 14.4 | 14.4 – 14.6 | 14.6 – 14.8 | 14.8 – 15.0 |
Frequency | 2 | 4 | 5 | 71 | 48 | 20 |
The number of athletes who completed the race in less than 14.6 seconds is:
Class mark of a class is obtained by using ______.
Can the experimental probability of an event be a negative number? If not, why?
Can the experimental probability of an event be greater than 1? Justify your answer.
The time, in seconds, taken by 150 athletes to run a 100 m hurdle race are tabulated below:
Time (sec.) | 13 – 14 | 14 – 15 | 15 – 16 | 16 – 17 | 17 – 18 | 18 – 19 |
Number of Athletes | 2 | 4 | 5 | 71 | 48 | 20 |
The number of athletes who completed the race in less than 17 seconds is: