English

For real number a, b (a > b > 0), let Area and{(x,y):x2+y2≤a2andx2a2+y2b2≥1} = 30π Area and{(x,y):x2+y2≥b2andx2a2+y2b2≤1} = 18π. Then the value of (a – b)2 is equal to ______. -

Advertisements
Advertisements

Question

For real number a, b (a > b > 0),

let Area `{(x, y): x^2 + y^2 ≤ a^2 and x^2/a^2 + y^2/b^2 ≥ 1}` = 30π

Area `{(x, y): x^2 + y^2 ≥ b^2 and x^2/a^2 + y^2/b^2 ≤ 1}` = 18π.

Then the value of (a – b)2 is equal to ______.

Options

  • 11

  • 12

  • 13

  • 14

MCQ
Fill in the Blanks

Solution

For real number a, b(a > b > 0),

let Area `{(x, y): x^2 + y^2 ≤ a^2 and x^2/a^2 + y^2/b^2 ≥ 1}` = 30π

Area `{(x, y): x^2 + y^2 ≥ b^2 and x^2/a^2 + y^2/b^2 ≤ 1}` = 18π.

Then the value of (a – b)2 is equal to 12.

Explanation:

Given: Area `{(x, y): x^2 + y^2 ≤ a^2 and x^2/a^2 + y^2/b^2 ≥ 1}` = 30π

And area `{(x, y): x^2 + y^2 ≥ b^2 and x^2/a^2 + y^2/b^2 ≥ 1}` = 18π

Case-1

x2 + y2 ≤ a2 represents the region inside the circle x2 + y2 = a2

`x^2/a^2 + y^2/b^2 ≥ 1` represents the region outside the ellipse `x^2/a^2 + y^2/b^2` = 1


Now, shaded area = πa2 – πab = 30π

⇒ a2 = 30 + ab  ...(i)

Case-2

x2 + y2 ≥ b2 represents the reigon outside the circle x2 + y2 = b2

`x^2/a^2 + y^2/b^2 ≤ 1` represents the region inside the ellipse `x^2/a^2 + y^2/b^2` = 1.


Now, shared area = πab – πb2 = 18π

⇒ b2 = ab – 18  ...(ii)

Adding equation (i) and equation (ii), we get

a2 + b2 = 2ab + 12

⇒ (a – b)2 = 12

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×