Advertisements
Advertisements
Question
For the curve C: (x2 + y2 – 3) + (x2 – y2 – 1)5 = 0, the value of 3y' – y3 y", at the point (α, α), α < 0, on C, is equal to ______.
Options
15
16
17
18
Solution
For the curve C : (x2 + y2 – 3) + (x2 – y2 – 1)5 = 0, the value of 3y' – y3y", at the point (α, α), α < 0, on C, is equal to 16.
Explanation:
Given a curve C : x2 + y2 – 3 + (x2 – y2 – 1)5 = 0
Which satisfies the point (α, α).
2α2 – 3 + –15 = 0
`\implies` α = `sqrt(2)`
Now, differentiate w.r.t. x.
2x + 2y . y' + 5(x2 – y2 – 1)4 (2x – 2yy') = 0 ...(i)
So, point is `(sqrt(2), sqrt(2))`
`sqrt(2) + sqrt(2)y^'5(-1)^4 (sqrt(2) - sqrt(2)y^')` = 0
`\implies` y' = `3/2` ...(ii)
Diff. (i) w.r.t. x.
Again, Diff. (i) w.r.t. x
1 + (y')2 + yy'' + 20(x2 – y2 – 1)3 (x – yy')2.2 + 5(x2 – y2 – 1)4 (1 – (y')2 – yy'') = 0
At `(sqrt(2), sqrt(2))` and y' = `3/2`
Now, Take `(1 + 9/4) + sqrt(2)y^('') - 40(sqrt(2) - sqrt(2). 3/2)^2 + 5(1)(1 - 9/4 - sqrt(2)y^(''))` = 0
`\implies 4sqrt(2)y^('')` = –23
Therefore, 3y' – y3y" = `9/2 + 23/2` = 16