Advertisements
Advertisements
Question
For the following, find a quadratic polynomial whose sum and product respectively of the zeroes are as given. Also find the zeroes of these polynomials by factorisation.
`(-8)/3, 4/3`
Solution
Sum of the zeroes = `- 8/3`
Product of the zeroes = `4/3`
P(x) = x2 – (Sum of the zeroes) + (Product of the zeroes)
Then, P(x) = `x^2 - (-8x)/3 + 4/3`
P(x) = `3x^2 + 8x + 4`
Using splitting the middle term method,
3x2 + 8x + 4 = 0
3x2 + (6x + 2x) + 4 = 0
3x2 + 6x + 2x + 4 = 0
3x(x + 2) + 2(x + 2) = 0
(x + 2)(3x + 2) = 0
`\implies` x = `-2, -2/3`
APPEARS IN
RELATED QUESTIONS
Find all zeroes of the polynomial `(2x^4 - 9x^3 + 5x^2 + 3x - 1)` if two of its zeroes are `(2 + sqrt3)` and `(2 - sqrt3)`
Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients
`g(x)=a(x^2+1)-x(a^2+1)`
If α and β are the zeros of the quadratic polynomial f(x) = 6x2 + x − 2, find the value of `alpha/beta+beta/alpha`.
If 𝛼 and 𝛽 are the zeros of the quadratic polynomial p(x) = 4x2 − 5x −1, find the value of α2β + αβ2.
If α and β are the zeros of the quadratic polynomial f(x) = x2 − 1, find a quadratic polynomial whose zeroes are `(2alpha)/beta" and "(2beta)/alpha`
Find the zeroes of the quadratic polynomial `(3x^2 ˗ x ˗ 4)` and verify the relation between the zeroes and the coefficients.
By actual division, show that x2 – 3 is a factor of` 2x^4 + 3x^3 – 2x^2 – 9x – 12.`
The zeroes of the quadratic polynomial x2 + 99x + 127 are ______.
Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:
`7y^2 - 11/3 y - 2/3`
Find the zeroes of the quadratic polynomial 4s2 – 4s + 1 and verify the relationship between the zeroes and the coefficients.