Advertisements
Advertisements
Question
For what value of k, the function given below is continuous at x = 0?
`f(x) = {{:((root (4+x)-2)/x; x ≠ 0),(k ; x = 0):}`
Options
0
`1/4`
1
4
MCQ
Solution
`1/4`
Explanation:
`f(x) = {{:((root (4+x)-2)/x; x ≠ 0),(k ; x = 0):}`
For continuity at x = 0
`lim_(x->0^+)[f(x)] = lim_(x->0^-)[f(x)] = f(0)`
`f(x) = (root (4+x)-2)/x xx (root (4+x)+2)/(root (4+x)+2)`
`f(x) = (4+x-4)/(x(root (4+x) +2))`
`f(x) = 1/(root (4+x)+2)`
`= 1/(root (4+x)+2)`
Let, x = 0+h
= `lim_(h->0) 1/root (4+0+h+2) = 1/4`
Given f(0) = k
So, `[k = 1/4]`
shaalaa.com
Is there an error in this question or solution?