Advertisements
Advertisements
Question
For x ∈ R, x ≠ 0, let f0(x) = `1/(1 - x)` and fn+1 (x) = f0(fn(x)), n = 0, 1, 2, .... Then the value of `f_100(3) + f_1(2/3) + f_2(3/2)` is equal to ______.
Options
`8/3`
`4/3`
`5/3`
`1/3`
Solution
For x ∈ R, x ≠ 0, let f0(x) = `1/(1 - x)` and fn+1 (x) = f0(fn(x)), n = 0, 1, 2, .... Then the value of `f_100(3) + f_1(2/3) + f_2(3/2)` is equal to `underlinebb(5/3)`.
Explanation:
f1 (x) = f0+1 (x) = f0(f0 (x)) = `1/(1 - 1/(1 - x)) = (x - 1)/x`
f2(x) = f1+1 (x) = f0(f1 (x)) = `1/(1 - (x - 1)/x)` = x
f3(x) = f2+1 (x) = f0(f2 (x)) = f0(x) = `1/(1 - x)`
f4(x) = f3+1 (x) = f0(f3 (x)) = `(x - 1)/x`
∴ f0 = f3 = f6 = .......... = `1/(1 - x)`
f1 = f4 = f7 = .......... = `(x - 1)/x`
f2 = f5 = f8 = .......... = x
f100(3) = `(3 - 1)/3`
= `2/3f_1(2/3)`
= `(2/3 - 1)/(2/3)`
= `-1/2`
`f_2(3/2) = 3/2`
∴ `f_100(3) + f_1(2/3) + f_2(3/2) = 5/3`