English

For x ∈ R, x ≠ 0, let f0(x) = 11-x and fn+1 (x) = f0(fn(x)), n = 0, 1, 2, .... Then the value of f100(3)+f1(23)+f2(32) is equal to ______. -

Advertisements
Advertisements

Question

For x ∈ R, x ≠ 0, let f0(x) = `1/(1 - x)` and fn+1 (x) = f0(fn(x)), n = 0, 1, 2, .... Then the value of `f_100(3) + f_1(2/3) + f_2(3/2)` is equal to ______.

Options

  • `8/3`

  • `4/3`

  • `5/3`

  • `1/3`

MCQ
Fill in the Blanks

Solution

For x ∈ R, x ≠ 0, let f0(x) = `1/(1 - x)` and fn+1 (x) = f0(fn(x)), n = 0, 1, 2, .... Then the value of `f_100(3) + f_1(2/3) + f_2(3/2)` is equal to `underlinebb(5/3)`.

Explanation:

f1 (x) = f0+1 (x) = f0(f0 (x)) = `1/(1 - 1/(1 - x)) = (x - 1)/x`

f2(x) = f1+1 (x) = f0(f1 (x)) = `1/(1 - (x - 1)/x)` = x

f3(x) = f2+1 (x) = f0(f2 (x)) = f0(x) = `1/(1 - x)`

f4(x) = f3+1 (x) = f0(f3 (x)) = `(x - 1)/x`

∴ f0 = f3 = f6 = .......... = `1/(1 - x)`

f1 = f4 = f7 = .......... = `(x - 1)/x`

f2 = f5 = f8 = .......... = x

f100(3) = `(3 - 1)/3`

= `2/3f_1(2/3)`

= `(2/3 - 1)/(2/3)`

= `-1/2`

`f_2(3/2) = 3/2`

∴ `f_100(3) + f_1(2/3) + f_2(3/2) = 5/3`

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×