Advertisements
Advertisements
Question
Free 238U nuclei kept in a train emit alpha particles. When the train is stationary and a uranium nucleus decays, a passenger measures that the separation between the alpha particle and the recoiling nucleus becomes x in time t after the decay. If a decay takes place when the train is moving at a uniform speed v, the distance between the alpha particle and the recoiling nucleus at a time t after the decay, as measured by the passenger will be
Options
x + vt
x - vt
x
depends on the direction of the train.
Solution
x
When the train is stationary, the separation between the alpha particle and recoiling uranium nucleus is x in time t after the decay. Even if the decay is taking place in a moving train and the separation is measured by the passenger sitting in it, the separation between the alpha particle and nucleus will be x. This is because the observer is also moving with the same speed with which the alpha particle and recoiling nucleus are moving, i.e. they all are in the same frame that is moving at a uniform speed.
APPEARS IN
RELATED QUESTIONS
Calculate the energy in fusion reaction:
`""_1^2H+_1^2H->_2^3He+n`, where BE of `""_1^2H`23He=7.73MeV" data-mce-style="position: relative;">=2.2323He=7.73MeV MeV and of `""_2^3He=7.73 MeV`
In a photon-electron collision ______.
(A) only total energy is conserved.
(B) only total momentum is conserved.
(C) both total energy and total momentum are conserved.
(D) both total momentum and total energy are not conserved
How long can an electric lamp of 100W be kept glowing by fusion of 2.0 kg of deuterium? Take the fusion reaction as
\[\ce{^2_1H + ^2_1H -> ^3_1He + n + 3.27 MeV}\]
Write notes on Nuclear fusion
In a nuclear reaction
`"_2^3He + _2^3He -> _2^4He +_1^1H +_1^1H + 12.86 Me V` though the number of nucleons is conserved on both sides of the reaction, yet the energy is released. How? Explain.
Show that the minimum energy needed to separate a proton from a nucleus with Zprotons and N neutrons is `ΔE = (M_(Z-1,N) + M_B - M_(Z,N))c^2`
where MZ,N = mass of an atom with Z protons and N neutrons in the nucleus and MB = mass of a hydrogen atom. This energy is known as proton-separation energy.
Why nuclear fusion reaction is also called thermo-nuclear reaction?
Write one balanced reaction representing nuclear fusion.
In a nuclear reactor, what is the function of a moderator?
In our Nature, where is the nuclear fusion reaction taking place continuously?
Explain in detail the four fundamental forces in nature.
Briefly explain the elementary particles present in nature.
A slab of stone of area 0.36 m2 and thickness 0.1 m is exposed on the lower surface to steam at 100°C. A block of ice at 0°C rests on the upper surface of the slab. In one hour 4.8 kg of ice is melted. The thermal conductivity of the slab is:
(Given latent heat of fusion of ice = 3.36 × 105 J kg−1)
The curve of binding energy per nucleon as a function of atomic mass number has a sharp peak for helium nucleus. This implies that helium nucleus is ______.