English

Function f(x) = log(1+x)-2x2+x is monotonically increasing when ______. -

Advertisements
Advertisements

Question

Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.

Options

  • x < 0

  • x > 0

  • x ∈ R

  • x > –1

MCQ
Fill in the Blanks

Solution

Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when x > –1.

Explanation:

f(x) = `log(1 + x) - (2x)/(2 + x)`

Differentiating w.r.t.x, we get

f'(x) = `1/(1 + x) - [(2(2 + x) - 2x.1)/(2 + x)^2]`

f'(x) = `1/(1 + x) - (4 + 2x - 2x)/(2 + x)^2`

f'(x) = `1/(1 + x) - 4/(2 + x)^2 > 0`

⇒ `1/(1 + x) > 4/(2 + x)^2`

⇒ (2 + x)2 > 4(1 + x)

⇒ 4 + x2 + 4x > 4 + 4x

⇒ x2 > 0

and f'(0) = 0

So, for all x > –1, f(x) increases

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×