Advertisements
Advertisements
Question
Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.
Options
x < 0
x > 0
x ∈ R
x > –1
MCQ
Fill in the Blanks
Solution
Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when x > –1.
Explanation:
f(x) = `log(1 + x) - (2x)/(2 + x)`
Differentiating w.r.t.x, we get
f'(x) = `1/(1 + x) - [(2(2 + x) - 2x.1)/(2 + x)^2]`
f'(x) = `1/(1 + x) - (4 + 2x - 2x)/(2 + x)^2`
f'(x) = `1/(1 + x) - 4/(2 + x)^2 > 0`
⇒ `1/(1 + x) > 4/(2 + x)^2`
⇒ (2 + x)2 > 4(1 + x)
⇒ 4 + x2 + 4x > 4 + 4x
⇒ x2 > 0
and f'(0) = 0
So, for all x > –1, f(x) increases
shaalaa.com
Is there an error in this question or solution?