English
Karnataka Board PUCPUC Science 2nd PUC Class 12

Gauss’S Law - Physics

Advertisements
Advertisements

Question

If Coulomb’s law involved 1/r3 dependence (instead of 1/r2), would Gauss’s law be still true?

One Line Answer

Solution

Gauss’s law will not be true, if Coulomb’s law involved 1/rdependence, instead of1/r2, on r.

shaalaa.com
Electrostatics of Conductors
  Is there an error in this question or solution?
Chapter 2: Electrostatic Potential and Capacitance - Exercise [Page 90]

APPEARS IN

NCERT Physics [English] Class 12
Chapter 2 Electrostatic Potential and Capacitance
Exercise | Q 2.31 (b) | Page 90
NCERT Physics [English] Class 12
Chapter 2 Electrostatic Potential and Capacitance
Exercise | Q 31.2 | Page 91

RELATED QUESTIONS

A spherical conductor of radius 12 cm has a charge of 1.6 × 10−7 C distributed uniformly on its surface. What is the electric field

  1. inside the sphere
  2. just outside the sphere
  3. at a point 18 cm from the centre of the sphere?

A spherical conducting shell of inner radius r1 and outer radius r2 has a charge Q.

(a) A charge q is placed at the centre of the shell. What is the surface charge density on the inner and outer surfaces of the shell?

(b) Is the electric field inside a cavity (with no charge) zero, even if the shell is not spherical, but has any irregular shape? Explain.


A 4 µF capacitor is charged by a 200 V supply. It is then disconnected from the supply and is connected to another uncharged 2 µF capacitors. How much electrostatic energy of the first capacitor is lost in the form of heat and electromagnetic radiation?


Define electrostatic potential at a point. Write its S.I. unit. Three-point charges q1, q2 and q3 are kept respectively at points A, B, and C as shown in the figure, Derive the expression for the electrostatic potential energy of the system.


Fill in the blank.
A point charge is placed at the centre of a hollow conducting sphere of internal radius 'r' and outer radius '2r'. The ratio of the surface charge density of the inner surface to that of the outer surface will be_________.


If R is the radius of a spherical conductor, Vm the dielectric strength, then the maximum electric-field magnitude to which it can be raised is ______.


The electrostatic force between the metal plates of an isolated parallel plate capacitor C having a charge Q and area A, is ______.


There are two metallic spheres of same radii but one is solid and the other is hollow, then ______.

A conductor carries a certain charge. When it is connected to another uncharged conductor of finite capacity, then the energy of the combined system is ______.

Which of the following statement is true?


Three Charges 2q, -q and -q lie at vertices of a triangle. The value of E and V at centroid of triangle will be ______.


A solid spherical conductor has charge +Q and radius R. It is surrounded by a solid spherical shell with charge -Q, inner radius 2R, and outer radius 3R. Which of the following statements is true?


A test charge q is made to move in the electric field of a point charge Q along two different closed paths (Figure). First path has sections along and perpendicular to lines of electric field. Second path is a rectangular loop of the same area as the first loop. How does the work done compare in the two cases?


Consider a finite insulated, uncharged conductor placed near a finite positively charged conductor. The uncharged body must have a potential:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×