Advertisements
Advertisements
Question
General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)
Options
`x/"a" = tan y/"a" + "c"`
tan xy = c
tan (x + y) = c
`tan (y + "c")/"a" = (x + y)/"a"`
Solution
General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is `tan (y + "c")/"a" = (x + y)/"a"`. (c is arbitrary constant)
Explanation:
`("d"y)/("d"x) = "a"^2/(x + y)^2` ......(i)
Put x + y = v ......(ii)
⇒ `("d"y)/("d"x) = "dv"/("d"x) - 1` ......(iii)
Substituting (ii) and (iii) in (i), we get
`"dv"/("d"x) - 1 = "a"^2/"v"^2`
⇒ `"dv"/("d"x) = ("a"^2 + "v"^2)/"v"^2`
⇒ `"v"^2/("a"^2 + "v"^2) "dv" = "d"x`
⇒ `("a"^2 + "v"^2 - "a"^2)/("a"^2 + "v"^2) "dv" = "d"x`
⇒ `"dv" - "a"^2 1/("a"^2 + "v"^2) "dv" = "d"x`
Integrating on both sides, we get
`int "dv" - "a"^2 int 1/("a"^2 + "v"^2) "dv" = int "d"x + "c"_1`
⇒ `"v" - "a"^2 * 1/"a" tan^-1 ("v"/"a") = x + "c"_1`
⇒ `x + y - "a" tan^-1 ((x + y)/"a") = x + "c"_1`
⇒ `(y + "c")/"a" = tan^-1 ((x + y)/"a")`, where c = – c1
⇒ `tan((y + "c")/"a") = (x + y)/"a"`