Advertisements
Advertisements
Question
Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals
Options
– f(x)
3f(x)
[f(x)]3
None of these
MCQ
Solution
3f(x)
Explanation:
Since, g(x) = `(3x + x^3)/(1 + 3x^2)`, (say) ......(i)
∴ f[g(x)] = f(y) = `log((1 + y)/(1 - y))`
= `log {(1 + (3x + x^3)/(1 + 3x^2))/(1 - (3x + x^3)/(1 + 3x^2))}`
⇒ f(g(x)) = `log((1 + x)/(1 - x))^3 = 3log((1 + x)/(1 - x))` = 3f(x)
shaalaa.com
Is there an error in this question or solution?