Advertisements
Advertisements
Question
Given `(x^3 + 12x)/(6x^2 + 8) = (y^3 + 27y)/(9y^2 + 27)` using componendo and divendo find x : y
Solution
`(x^3 + 12x)/(6x^2 + 8) = (y^3 + 27y)/(9y^2 + 27)`
Applying componenedo and divendendo we get
`(x^2 + 12x + 6x^2 + 8)/(x^3 + 12x - 6x^2 - 8) = (y^3 + 27y + 9y^2 + 27)/(y^3 + 27y - 9y^2 - 27)`
`=> (x^3 + 3(1)(4)x + 3(1)(2)x^2 + 2^3)/(x^3 + 3(1)(4)x - 3(1)(2)x^2 - 2^3) = (y^3 + 3(1)(9)y + 3(1)(3)y^2 + 3^3)/(y^3 + 3(1)(9)y - 3(1)(3)y^2 - 3^3)`
`=> (x^3 + 3(1)(4)x + 3(1)(2)x^2 + 2^3)/(x^3 - 3(1)(2)x^2 + 3(1)(4)x - 2^3) =(y^3 + 3(1)(9)y + 3(1)(3)y^2 + 3^3)/(y^3 - 3(1)(3)y^2 + 3(1)(9)y - 3^3)`
`=> (x + 2)^3/(x - 2)^3 = (y + 3)^3/(y - 3)^3`
`=> (x + 2)/(x - 2) = (y + 3)/(y - 2)`
Again applying componendo and dividendo we get
`(x + 2 + x - 2)/(x + 2 - x + 2) = (y + 3 + y - 3)/(y + 3 - y + 3)`
`=> (2x)/4 = (2y)/6`
`=> x/2 = y/3`
Applying alternendo we get
`x/y = 2/3`
=> x : y = 2 : 3