Advertisements
Advertisements
Question
If `tan(x/2)=tanh(u/2),"show that" u = log[(tan(pi/4+x/2))] `
Sum
Solution
Given that: `tan(x/2)=tanh(u/2)`
`u/2=tanh^-1[tan(x/2)]`
`therefore u=2tanh^-1[tan(x/2)]`
By using Inverse hyperbolic function,
`=log[(1+tan(x/2))/(1-tan(x/2))]`
But `(1+tan(x/2))/(1-tan(x/2))=(pi/4+tan(x/2))/(pi/4-tan(x/2))=tan(pi/4+x/2)`
`therefore u=log[(tan(pi/4+x/2))]`
Hence proved.
shaalaa.com
Inverse Hyperbolic Functions
Is there an error in this question or solution?