Advertisements
Advertisements
Question
`lim_("h" -> 0) (1/("h"^2 sqrt(8 + "h")) - 1/(2"h"))` is equal to ____________.
Options
`1/24`
None of these
`-1/48`
`1/48`
MCQ
Fill in the Blanks
Solution
`lim_("h" -> 0) (1/("h"^2 sqrt(8 + "h")) - 1/(2"h"))` is equal to `underline(-1/48)`.
Explanation:
`lim_("h" -> 0) (1/("h"^2 sqrt(8 + "h")) - 1/(2"h"))`
`= lim_("h" -> 0)1/"h" {1/2 (1 + "h"/8)^(-1/2) - 1/2}`
`= lim_("h" -> 0)1/"h".1/2 {1 - 1/3 . "h"/8 + ((-1/3)(-5/3))/2 "h"^2/64 + .... -1}`
`= lim_("h" -> 0)1/(2"h") {-"h"/24 + 5/18 . "h"^2/64 + ....}`
`= lim_("h"-> 0) 1/2 {-1/24 + 5/18 . "h"/64 + ...}`
`= -1/48`
shaalaa.com
Is there an error in this question or solution?