Advertisements
Advertisements
Question
If `int_0^π f(sinx)dx = kint_0^π f(sinx)dx`, then find the value of k.
Sum
Solution
I = `int_0^π xf(sinx)dx` ....(1)
∴ I = `int_0^π f(π - x) f[sin(π - x)]dx`
∴ I = `int_0^π (π - x) f(sin x)dx` ....(2)
Adding (1) and (2)
2I = `int_0^π f(sin x)[x + π - x]dx`
∴ I = `int_0^π π/2 f(sin x)dx`
= `k int_0^π f(sin x)dx` ....(Given)
∴ k = `π/2`
shaalaa.com
Methods of Evaluation and Properties of Definite Integral
Is there an error in this question or solution?