English

If 0 < P(A) < 1, 0 < P(B) < 1 and P(A ∪ B) = P(A) + P(B) – P(A)P(B), then -

Advertisements
Advertisements

Question

If 0 < P(A) < 1, 0 < P(B) < 1 and P(A ∪ B) = P(A) + P(B) – P(A)P(B), then 

Options

  • P(B/A) = P(B) – P(A)

  • P[(A ∪ B)c] = P(Ac) + P(Bc)

  • P[(A ∪ B)c] = P(Ac) + P(Bc)

  • P[(Ac ∪ B)c] = P(Ac) + P(Bc)

MCQ

Solution

P[(A ∪ B)c] = P(Ac) + P(Bc)

Explanation:

Given P(A ∪ B) = P(A) + P(B) – P(A).P(B)

⇒ 1 – P[(A ∪ B)c] = P(A) + P(B) [1 – P(A)]

⇒ 1 – P[(A ∪ B)c] = P(A) + P(B) P(Ac)

⇒ 1 – P(A) – P(B) P(Ac) = P[(A ∪ B)c]

⇒ P(Ac) – P(B) P(Ac) = P[(A ∪ B)c]

⇒ P(Ac) [1 – P(B)] = P[(A ∪ B)c]

⇒ P(Ac) . P(Bc) = P[(A ∪ B)c]

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×