Advertisements
Advertisements
Question
If 0 ≤ x < 2π, then the number of real values of x, which satisfy the equation cos x + cos 2x + cos 3x + cos 4x = 0, is ______
Options
5
7
9
3
MCQ
Fill in the Blanks
Solution
If 0 ≤ x < 2π, then the number of real values of x, which satisfy the equation cos x + cos 2x + cos 3x + cos 4x = 0, is 7.
Explanation:
cos x + cos 2x + cos 3x + cos 4x = 0
∴ cosx + cos4x + cos2x + cos3x = 0
∴ `2cos (5x)/2.cos (3x)/2 + 2cos (5x)/2.cos x/2 = 0`
⇒ `cos (5x)/2.[cos (3x)/2 + cos x/2] = 0`
⇒ `cos (5x)/2 .2cosx.cos x/2 = 0`
⇒ x = (2n + 1)`pi/5`, (2k + 1)`pi/2` or (2m + 1) π
⇒ `x = pi/5, (3pi)/5, pi, (7pi)/5, (9pi)/5, pi/2, (3pi)/2` in 0 ≤ x < `2pi`
shaalaa.com
Is there an error in this question or solution?