English

If ∫1(x2+4)(x2+9)dx=Atan-1 x2+Btan-1(x3)+C, then A – B = ______. -

Advertisements
Advertisements

Question

If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1  x/2 + B tan^-1(x/3) + C`, then A – B = ______.

Options

  • `1/6`

  • `1/30`

  • `-1/30`

  • `-1/6`

MCQ
Fill in the Blanks

Solution

If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1  x/2 + B tan^-1(x/3) + C`, then A – B = `underlinebb(1/6)`.

Explanation:

Consider I = `int 1/((x^2 + 4)(x^2 + 9))dx`

= `int1/5(1/(x^2 + 4) - 1/(x^2 + 9))dx`

= `1/5[int 1/(x^2 + 2^2)dx - int 1/(x^2 + 3^2) dx]`

= `1/5[1/2 tan^-1  x/2 - 1/3 tan^-1  x/3] + C`

= `1/10  tan^-1  x/2 - 1/15 tan^-1  x/3 + C`

We have, I = `A tan^-1  x/2 + Btan^-1  x/3 + C`

So, `Atan^-1  x/2 + B tan^-1  x/3 + C`

= `1/10 tan^-1  x/2 - 1/15 tan^-1  x/3 + C`

After comparing on both sides, we get

A = `1/10` and B = `(-1)/15`

Hence, A – B = `1/10 + 1/15 = (15 + 10)/150 = 1/6`

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×