Advertisements
Advertisements
Question
If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1 x/2 + B tan^-1(x/3) + C`, then A – B = ______.
Options
`1/6`
`1/30`
`-1/30`
`-1/6`
MCQ
Fill in the Blanks
Solution
If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1 x/2 + B tan^-1(x/3) + C`, then A – B = `underlinebb(1/6)`.
Explanation:
Consider I = `int 1/((x^2 + 4)(x^2 + 9))dx`
= `int1/5(1/(x^2 + 4) - 1/(x^2 + 9))dx`
= `1/5[int 1/(x^2 + 2^2)dx - int 1/(x^2 + 3^2) dx]`
= `1/5[1/2 tan^-1 x/2 - 1/3 tan^-1 x/3] + C`
= `1/10 tan^-1 x/2 - 1/15 tan^-1 x/3 + C`
We have, I = `A tan^-1 x/2 + Btan^-1 x/3 + C`
So, `Atan^-1 x/2 + B tan^-1 x/3 + C`
= `1/10 tan^-1 x/2 - 1/15 tan^-1 x/3 + C`
After comparing on both sides, we get
A = `1/10` and B = `(-1)/15`
Hence, A – B = `1/10 + 1/15 = (15 + 10)/150 = 1/6`
shaalaa.com
Is there an error in this question or solution?