Advertisements
Advertisements
Question
If `|(1 + x, x, x^2),(x, 1 + x, x^2),(x^2, x, 1 + x)|` = ax5 + bx4 + cx3 + dx2 + λx + µ be an identity in x, where a, b, c, d, λ, µ are independent of x. Then the value of λ is ______.
Options
3
2
4
–3
Solution
If `|(1 + x, x, x^2),(x, 1 + x, x^2),(x^2, x, 1 + x)|` = ax5 + bx4 + cx3 + dx2 + λx + µ be an identity in x, where a, b, c, d, λ, µ are independent of x. Then the value of λ is 3.
Explanation:
Applying C1→C1 + C2 + C3
Δ = `|((1 + x)^2, x, x^2),((1 + x)^2, 1 + x, x^2),((1 + x)^2, x, 1 + x)|`
Δ = `(1 + x)^2|(1, x, x^2),(1, 1 + x, x^2),(1, x, 1 + x)|`
Differentiating both sides of the given equality w.r.t.x, we get
`2(1 + x)|(1, x, x^2),(1, 1 + x, x^2),(1, x, 1 + x)| + (1 + x)^2 {|(1, 1, x^2),(1, 1, x^2),(1, 1, 1 + x)| + |(1, x, 2x),(1, 1 + x, 2x),(1, x, 1)|}`
= 5ax4 + 4bx3 + 3cx2 + 2dx + λ
Now putting x = 0
`2|(1, 0, 0),(1, 1, 0),(1, 0, 1)| + |(1, 0, 0),(1, 1, 0),(1, 0, 1)|` = λ
∴ 2(1) + 1(1) = λ
⇒ λ = 3