English

If |1+xxx2x1+xx2x2x1+x| = ax5 + bx4 + cx3 + dx2 + λx + µ be an identity in x, where a, b, c, d, λ, µ are independent of x. Then the value of λ is ______. -

Advertisements
Advertisements

Question

If `|(1 + x, x, x^2),(x, 1 + x, x^2),(x^2, x, 1 + x)|` = ax5 + bx4 + cx3 + dx2 + λx + µ be an identity in x, where a, b, c, d, λ, µ are independent of x. Then the value of λ is ______.

Options

  • 3

  • 2

  • 4

  • –3

MCQ
Fill in the Blanks

Solution

If `|(1 + x, x, x^2),(x, 1 + x, x^2),(x^2, x, 1 + x)|` = ax5 + bx4 + cx3 + dx2 + λx + µ be an identity in x, where a, b, c, d, λ, µ are independent of x. Then the value of λ is 3.

Explanation:

Applying C1→C1 + C2 + C3

Δ = `|((1 + x)^2, x, x^2),((1 + x)^2, 1 + x, x^2),((1 + x)^2, x, 1 + x)|`

Δ = `(1 + x)^2|(1, x, x^2),(1, 1 + x, x^2),(1, x, 1 + x)|`

Differentiating both sides of the given equality w.r.t.x, we get

`2(1 + x)|(1, x, x^2),(1, 1 + x, x^2),(1, x, 1 + x)| + (1 + x)^2 {|(1, 1, x^2),(1, 1, x^2),(1, 1, 1 + x)| + |(1, x, 2x),(1, 1 + x, 2x),(1, x, 1)|}`

= 5ax4 + 4bx3 + 3cx2 + 2dx + λ

Now putting x = 0

`2|(1, 0, 0),(1, 1, 0),(1, 0, 1)| + |(1, 0, 0),(1, 1, 0),(1, 0, 1)|` = λ

∴ 2(1) + 1(1) = λ

⇒ λ = 3

shaalaa.com
Determinants
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×